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Abstract

Motivated by the theory of hyperbolic twistor spaces, we obtain a local description of self-dual Walker metrics whose traceless
Ricci operator, considered as a bundle-valued 2-form, is two-step nilpotent. The Einstein condition for Walker metrics is also
discussed.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A neutral metric g (i.e. of split signature (2, 2)) on a 4-manifold M is said to be a Walker metric if there exists a
two-dimensional null distribution on M , which is parallel with respect to the Levi-Civita connection of g. This type of
metrics has been introduced by Walker [9] who has shown that they have a (local) canonical form depending on three
smooth functions. Various curvature properties of some special classes of Walker metrics have been studied in [2,3,5,
6] where several examples of neutral metrics with interesting geometric properties have been given. These include the
non-flat Kähler–Einstein neutral metrics on complex tori and primary Kodaira surfaces constructed in [8].

In this note we study the SO0(2, 2)-irreducible components [7] of the curvature tensor of the Walker metrics, where
SO0(2, 2) is the identity component of O(2, 2). In particular, we discuss the self-dual, anti-self-dual and Einstein
conditions for these metrics. Moreover, we obtain a local description of the self-dual Walker metrics with constant
scalar curvature whose traceless Ricci tensor B, considered as a bundle-valued 2-form, has the property B2

|Λ− = 0,
where Λ− is the bundle of anti-self-dual bivectors. The motivation for considering such neutral metrics comes from
the fact that they yield non-Kähler isotropic Kähler metrics [4] on the so-called hyperbolic twistor spaces [1]. The
self-dual Walker metrics with a two-step nilpotent Ricci operator, i.e. B2

= 0, are discussed as well.
It should be noted that the local descriptions of self-dual and Einstein self-dual Walker metrics in Theorem 1 and

Corollary 2 below have been also obtained in [3] where a local classification of a special class of neutral Osserman
metrics has been given.
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2. Preliminaries

Let M be an oriented four-dimensional manifold with a neutral metric g, i.e. a metric of signature (2, 2). The metric
g induces an inner product on the bundle Λ2 of bivectors via

〈X1 ∧ X2, X3 ∧ X4〉 =
1
2
[g(X1, X3)g(X2, X4) − g(X1, X4)g(X2, X3)],

X1, . . . , X4 ∈ T M . Let e1, . . . , e4 be a local oriented orthonormal frame of T M with ‖e1‖
2

= ‖e2‖
2

= 1,
‖e3‖

2
= ‖e4‖

2
= −1. As in the Riemannian case, the Hodge star operator ∗ : Λ2

→ Λ2 is an involution given by

∗(e1 ∧ e2) = e3 ∧ e4, ∗(e1 ∧ e3) = e2 ∧ e4, ∗(e1 ∧ e4) = −e2 ∧ e3.

Denote by Λ± the subbundles of Λ2 determined by the eigenvalues ±1 of the Hodge star operator. Set

s1 = e1 ∧ e2 − e3 ∧ e4, s̄1 = e1 ∧ e2 + e3 ∧ e4,

s2 = e1 ∧ e3 − e2 ∧ e4, s̄2 = e1 ∧ e3 + e2 ∧ e4,

s3 = e1 ∧ e4 + e2 ∧ e3, s̄3 = e1 ∧ e4 − e2 ∧ e3.

(1)

Then {s1, s2, s3} and {s̄1, s̄2, s̄3} are local oriented orthonormal frames of Λ− and Λ+ respectively with ‖s1‖
2

=

‖s̄1‖
2

= 1, ‖s2‖
2

= ‖s̄2‖
2

= ‖s3‖
2

= ‖s̄3‖
2

= −1.
LetR : Λ2

−→ Λ2 be the curvature operator of (M, g). It is related to the curvature tensor R by

g(R(X ∧ Y ), Z ∧ T ) = g(R(X, Y )Z , T ); X, Y, Z , T ∈ T M.

In this paper we adopt the following definition of the curvature tensor R(X, Y ) = ∇[X,Y ] − [∇X , ∇Y ]. The curvature
operatorR admits an SO0(2, 2)-irreducible decomposition

R =
τ

6
I + B +W+ +W−

similar to that in the four-dimensional Riemannian case. Here τ is the scalar curvature, B represents the traceless Ricci
tensor,W =W+ +W− corresponds to the Weyl conformal tensor, andW± =W|Λ± =

1
2 (W ± ∗W). The metric g

is Einstein exactly when B = 0 and is conformally flat whenW = 0. It is said to be self-dual (resp. anti-self-dual) if
W− = 0 (resp.W+ = 0).

Recall that, by a result of Walker [9], for every Walker metric g on a 4-manifold M there exist local coordinates
(x, y, z, t) around any point of M such that the matrix of g with respect to the frame ( ∂

∂x , ∂
∂y , ∂

∂z ,
∂
∂t ) has the following

form:

g =


0 0 1 0
0 0 0 1
1 0 a c
0 1 c b

 , (2)

where a, b, c are smooth functions.
The components of the curvature tensor of g with respect to the frame ( ∂

∂x , ∂
∂y , ∂

∂z ,
∂
∂t ) have been computed in [6]

(see also [5]) and we shall make use of the formulas obtained there throughout the present paper.

3. The curvature operator of a Walker metric

Let g be a Walker metric on R4 having the form (2) with respect to the standard coordinates (x, y, z, t) of R4. Set

e1 =
1 − a

2
∂

∂x
+

∂

∂z
, e2 =

1 − b

2
∂

∂y
+

∂

∂t
− c

∂

∂x

e3 = −
1 + a

2
∂

∂x
+

∂

∂z
, e4 = −

1 + b

2
∂

∂y
+

∂

∂t
− c

∂

∂x
.

(3)

Then {e1, e2, e3, e4} is an oriented g-orthonormal frame of T R4.
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Let {s1, s2, s3, s̄1, s̄2, s̄3} be the frame of Λ2
= Λ− ⊕ Λ+ defined by means of {e1, e2, e3, e4} via (1). Then

s1 = −
a + b

2
∂

∂x
∧

∂

∂y
+

∂

∂x
∧

∂

∂t
−

∂

∂y
∧

∂

∂z

s2 =
∂

∂x
∧

∂

∂z
−

∂

∂y
∧

∂

∂t
− c

∂

∂x
∧

∂

∂y

s3 =
a − b

2
∂

∂x
∧

∂

∂y
+

∂

∂x
∧

∂

∂t
+

∂

∂y
∧

∂

∂z

(4)

and

s̄1 =
1 + ab

2
∂

∂x
∧

∂

∂y
+ 2c

∂

∂x
∧

∂

∂z
− a

∂

∂x
∧

∂

∂t
+ b

∂

∂y
∧

∂

∂z
+ 2

∂

∂z
∧

∂

∂t

s̄2 = c
∂

∂x
∧

∂

∂y
+

∂

∂x
∧

∂

∂z
+

∂

∂y
∧

∂

∂t

s̄3 =
ab − 1

2
∂

∂x
∧

∂

∂y
+ 2c

∂

∂x
∧

∂

∂z
− a

∂

∂x
∧

∂

∂t
+ b

∂

∂y
∧

∂

∂z
+ 2

∂

∂z
∧

∂

∂t
.

(5)

Next we give the matrix representations of the irreducible components of the curvature operator R with respect to
the frame (4), (5).

3.1. The anti-self-dual and self-dual Weyl operators

Set

Ri j = 〈R(si ), s j 〉, i, j = 1, 2, 3.

Then the matrix of the anti-self-dual Weyl operator W− : Λ− → Λ− with respect to the frame {s1, s2, s3} has the
form

W− =


R11 −

τ

6
R12 R13

−R12 −R22 −
τ

6
−R23

−R13 −R23 −R33 −
τ

6

 , (6)

where τ is the scalar curvature.
Straightforward computations making use of (4) and the curvature formulas in [6] give

R11 = −
1
2
(bxx + ayy − 2cxy)

R12 = −
1
2
(cxx − bxy − axy + cyy)

R13 = −
1
2
(bxx − ayy)

R22 = −
1
2
(axx + byy − 2cxy)

R23 = −
1
2
(cxx + axy − bxy − cyy)

R33 = −
1
2
(bxx + ayy + 2cxy),

(7)

where subscripts in the right-hand side mean partial derivatives. Therefore for the scalar curvature τ we have

τ = 2(〈R(s1), s1〉 − 〈R(s2), s2〉 − 〈R(s3), s3〉) = axx + byy + 2cxy . (8)

In the next theorem we describe explicitly the self-dual Walker metrics (see also [3]).
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Theorem 1. A Walker metric is self-dual if and only if the functions a, b, c have the form

a = x2 y A + x3 B + x2C + 2xy D + x E + yF + G,

b = xy2 B + y3 A + y2 K + 2xyL + x M + yN + P,

c = x2 y B + xy2 A + x2L + y2 D +
1
2

xy(C + K ) + x Q + y R + S,

(9)

where A, B, C, etc. are smooth functions depending only on z and t.

Proof. Identities (6)–(8) imply that the self-duality condition for a Walker metric (2) is equivalent to the equations

ayy = bxx = 0, axy = cyy, bxy = cxx , axx + byy = 4cxy . (10)

Suppose that the functions a, b, c satisfy these equations. Then it is easy to check that all partial derivatives of
a, b, c of order 4 with respect to x and y vanish. Therefore a, b, c are polynomials of degree 3 with respect to x and
y with coefficients that are smooth functions of z and t . Now putting these polynomials into (10), one can easily see
that the functions a, b, c must have the form (9). Conversely, if a, b, c have this form, it is trivial to check that they
satisfy Eqs. (10). �

To write down the matrix representation of the self-dual Weyl operatorW+ : Λ+ → Λ+ with respect to the frame
{s̄1, s̄2, s̄3} we set

Rī j̄ = 〈R(s̄i ), s̄ j 〉, i, j = 1, 2, 3.

Then making use of (5) and the curvature formulas in [6] we get

R1̄1̄ = R1̄3̄ = R3̄3̄ = −2c2axx −
1
2

a2bxx −
1
2

b2ayy + 2accxx − 2bcaxy + abcxy + 4caxt − 4ccxz − 2acxt

+ 2abxz + 2bayt − 2bcyz + 4czt − 2at t − 2bzz + 2(ax ct − at cx ) + azbx − ax bz + aybt − at by
+ 2(bycz − bzcy) + c(ax by − aybx ) + a(bx cy − bycx ) + b(aycx − ax cy), (11)

R1̄2̄ = R2̄3̄ = −caxx − ccxy +
1
2

acxx +
1
2

abxy −
1
2

baxy −
1
2

bcyy + axt − byz + cyt − cxz, (12)

R2̄2̄ = −
1
2
(axx + byy + 2cxy). (13)

This and (8) imply that

W+ =


R1̄1̄ −

τ

6
R1̄2̄ R1̄1̄

−R1̄2̄
τ

3
−R1̄2̄

−R1̄1̄ −R1̄2̄ −R1̄1̄ −
τ

6

 . (14)

In particular, any anti-self-dual Walker metric is scalar flat. We refer the reader to [3] for an analysis of the Jordan
form of the operatorW+.

Theorem 2. A Walker metric is conformally flat if and only the functions a, b, c have the form

a = x2C + 2xy D + x E + yF + G,

b = −y2C + 2xyL + x M + yN + P,

c = x2L + y2 D + x Q + y R + S,

where C, D, E, etc. are smooth functions of z and t obeying the following equations:

Ct − 2L z = C Q − L E + DM,

Cz + 2Dt = C R − L F + N D,

Et − Nz + Rt − Qz = 2C S − 2LG + 2D P

−2(PCz + C Pz) + N Qz + QNz + 4(SL z + L Sz) + E Mz + M Ez − 2(M Rz + RMz) − N Nz − 3Q Qz
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+ N Rt + QEt + F Mt + 2M Ft + 2SCt + 4C St − Q Rt

− 4GL t − 6LG t + 2D Pt + 4Qzt − 2Et t − 2Mzz = 0,

−2(F Qt + QFt ) + N Ft + F Nt + 4(SDt + DSt ) + E Rt + REt + 2(GCt + CG t ) − E Et − 3R Rt

− 2SCz − 4C Sz + E Qz + RNz − RQz + 2F Mz + M Fz

− 4P Dz − 6D Pz + DGz + 4Rzt − 2Ft t − 2Nzz = 0,

2(SEt + E St ) + 2(SNz + N Sz) + 2P Ft + F Pt + 2G Mz + MGz − 2(P Rz + R Pz) − 2(G Qt + QG t )

− 2SQz − 2S Rt − E Pz − N G t + 4Szt − 2G t t − 2Pzz

+ S(E N − F M) + G(M R − N Q) + P(F Q − E R) = 0.

Proof. It follows from (10)–(14) that a Walker metric is conformally flat if and only if

ayy = bxx = 0, axx + byy = 0, axy = cyy, bxy = cxx , cxy = 0,

caxx − abxy + baxy − axt + byz − cyt + cxz = 0,

2caxt + 2cbyz + 2abxz + 2bayt − 2ccxz − 2acxt − 2ccyt − 2bcyz + 4czt − 2at t − 2bzz

+ 2(ax ct − at cx ) + 2(bycz − bzcy) + (azbx − ax bz) + (aybt − at by)

+ c(ax by − aybx ) + a(bx cy − bycx ) + b(aycx − ax cy) = 0.

Now the result follows on plugging the expressions (9) for a, b, c into the above equations and comparing the
coefficients of the variables x and y. �

3.2. The Ricci operator

It follows from [6] that the (1, 1)-tensor R̂ic corresponding to the (2, 0)-Ricci tensor of a Walker metric (2) is given
by

R̂ic

(
∂

∂x

)
=

1
2
(axx + cxy)

∂

∂x
+

1
2
(bxy + cxx )

∂

∂y
,

R̂ic

(
∂

∂y

)
=

1
2
(axy + cyy)

∂

∂x
+

1
2
(byy + cxy)

∂

∂y
,

R̂ic

(
∂

∂z

)
= α

∂

∂x
+ β

∂

∂y
+

1
2
(axx + cxy)

∂

∂z
+

1
2
(axy + cyy)

∂

∂t
,

R̂ic

(
∂

∂t

)
= γ

∂

∂x
+ δ

∂

∂y
+

1
2
(bxy + cxx )

∂

∂z
+

1
2
(byy + cxy)

∂

∂t
,

(15)

where

2α = caxy + bayy − 2ayt − ccyy − aycx − c2
y − acxy + 2cyz + cyax + ayby,

2β = axt + byz − aybx − baxy + ccxy + cx cy − cyt − cxz + acxx − caxx ,

2γ = axt + byz − aybx − abxy + cx cy + bcyy − cbyy − cxz + ccxy − ct y,

2δ = abxx − 2bxz + ax bx + cbxy − bcxy − bx cy + cx by − c2
x − ccxx + 2cxt .

(16)

Formulas (15) and (8) imply that the traceless Ricci tensor Z = R̂ic −
τ
4 I d is given by

Z

(
∂

∂x

)
= λ

∂

∂x
+ µ

∂

∂y
,

Z

(
∂

∂y

)
= ν

∂

∂x
− λ

∂

∂y
,

Z

(
∂

∂z

)
= α

∂

∂x
+ β

∂

∂y
+ λ

∂

∂z
+ ν

∂

∂t
,

Z

(
∂

∂t

)
= γ

∂

∂x
+ δ

∂

∂y
+ µ

∂

∂z
− λ

∂

∂t
,

(17)
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where α, β, γ, δ are defined by (16) and

4λ = axx − byy, 2µ = bxy + cxx , 2ν = axy + cyy . (18)

We have B(X ∧ Y ) = Z(X) ∧ Y + X ∧ Z(Y ) and formulas (4), (5) and (17) imply that

B(s1) = (δ + α + c(ν − µ))s̄1 + (µ − ν)s̄2 − (δ + α + c(ν − µ))s̄3,

B(s2) = (β + γ − 2λc)s̄1 + 2λs̄2 − (β + γ − 2λc)s̄3,

B(s3) = (δ − α − c(ν + µ))s̄1 + (µ + ν)s̄2 − (δ − α − c(ν + µ))s̄3,

B(s̄1) = (δ + α + c(ν − µ))s1 − (β + γ − 2λc)s2 − (δ − α − c(ν + µ))s3,

B(s̄2) = −(µ − ν)s1 + 2λs2 + (µ + ν)s3,

B(s̄3) = (δ + α + c(ν − µ))s1 − (β + γ − 2λc)s2 − (δ − α − c(ν + µ))s3.

(19)

The Einstein condition is equivalent to the vanishing of the tensor Z and formulas (17), (16) and (18) imply the
following result (see also [6]).

Theorem 3. A Walker metric is Einstein if and only if

axx = byy, axy + cyy = 0, bxy + cxx = 0, (20)

bayy + 2caxy − acxy − 2ayt + 2cyz + ayby + ax cy − aycx − c2
y = 0, (21)

abxy + baxy + caxx − ccxy − axt − byz + cyt + cxz + aybx − cx cy = 0, (22)

abxx + 2cbxy − bcxy − 2bxz + 2cxt + ax bx − bx cy + cx by − c2
x = 0. (23)

Corollary 1. A Walker metric with c = 0 is Einstein if and only if the functions a and b have the form

a = x2 K + x A(z, t) + M(y, z, t),

b = y2 K + y B(z, t) + N (x, z, t),
(24)

where K is a constant and A, B, M, N are smooth functions satisfying the following PDE’s:

Nx My = At + Bz, (25)

[Nx (x2 K + x A + M)]x = 2Nzx , (26)

[My(y2 K + y B + N )]y = 2Mt y . (27)

Proof. Suppose that a Walker metric with c = 0 is Einstein. Then Eqs. (20) imply that the derivatives ax and by have
the form ax = α(x, z, t), by = β(y, z, t), where α and β are smooth functions for which αx = βy . It is clear that the
functions αx and βy depend only on the variables z and t ; therefore we can write

ax = 2x K (z, t) + A(z, t), by = 2yK (z, t) + B(z, t)

for some smooth functions K , A, B. These identities imply that a and b have the form

a = x2 K (z, t) + x A(z, t) + M(y, z, t), b = y2 K (z, t) + y B(z, t) + N (x, z, t),

where M and N are smooth functions. The scalar curvature of the given metric is constant and we infer from (8) that
the function K (z, t) is constant. This proves (24).

For c = 0, Eqs. (21) and (23) take the form (bay)y = 2at y and (abx )x = 2bzx . In view of (24), the latter equations
imply (26) and (27), respectively. Moreover, it follows from (20) and (22) that axt + byz = aybx and, using (24), we
obtain Eq. (25). �

Remark. Let us note that the description of the Einstein condition for the Walker metrics with c = 0 given in [2,
Theorem 3] is incomplete since only the case when the functions Nx and My do not depend on the variables x and y,
respectively, is considered. The next two examples show that, in general, Nx (resp. My) may depend on x (resp. y).
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Example 1. In the case b = 0 and c = 0 Eqs. (25)–(27) are equivalent to the equations At = 0, Mt y = 0. Hence a
Walker metric with b = c = 0 is Einstein if and only if A = A(z) and M = P(y, z) + Q(z, t), where A, P , Q are
arbitrary smooth functions. In this case a = x A(z) + P(y, z) + Q(z, t) and (8) implies that the metric is Ricci flat.

Example 2. Let K be a non-zero constant and let A(z), P(z) be arbitrary smooth functions. Set

a = x2 K + x A(z) + P(z) arctan y, b = K (y2
+ 1), c = 0.

Then it is easy to check that the functions a, b, c satisfy Eqs. (25)–(27); hence the corresponding Walker metric is
Einstein with non-zero scalar curvature equal to 2K .

Theorem 1 and identities (16)–(18) imply the following

Corollary 2. A Walker metric is Einstein and self-dual if and only if the functions a, b, c have the form

a = x2 K + x E(z, t) + yF(z, t) + G(z, t),

b = y2 K + x M(z, t) + yN (z, t) + P(z, t),

c = xyK + x Q(z, t) + y R(z, t) + S(z, t),

(28)

where K is a constant and E, F, G, etc. are smooth functions satisfying the equations

2Rz − 2Ft = F Q + R2
+ K G − RE − F N ,

Et + Nz − Rt − Qz = F M − Q R + K S,

2Qt − 2Mz = M R + Q2
+ K P − E M − QN .

4. Walker metrics with B2|Λ− = 0

The condition treated here appears when analyzing isotropic Kähler metrics on hyperbolic twistor spaces [1].

Theorem 4. A Walker metric satisfies the condition B2
|Λ− = 0 if and only if

axx = byy, axy + cyy = bxy + cxx = 0.

Proof. It follows from (19) that

〈B2(s1), s1〉 = 〈B(s1),B(s1)〉 = −(µ − ν)2,

〈B2(s2), s2〉 = 〈B(s2),B(s2)〉 = −4λ2,

〈B2(s3), s3〉 = 〈B(s3),B(s3)〉 = −(µ + ν)2.

(29)

Therefore if B2
|Λ− = 0, then λ = µ = ν = 0. Conversely, if λ = µ = ν = 0, then by (19) we have 〈B2(si ), s j 〉 = 0

for 1 ≤ i, j ≤ 3. Now the theorem follows from (18).

Next we consider the condition for the Ricci operator B to be two-step nilpotent.

Theorem 5. A Walker metric satisfies the condition B2
= 0 if and only if

axx = byy, axy + cyy = bxy + cxx = 0 and αδ = β2, (30)

where α, β, δ are the functions defined by (16).

Proof. We have B2(X ∧ Y ) = Z2(X) ∧ Y + X ∧ Z2(Y ) + 2Z(X) ∧ Z(Y ).
Suppose that B2

= 0. Then Theorem 4 implies that λ = µ = ν = 0 (the functions λ, µ, ν being defined by (18)).
Therefore the functions a, b, c satisfy the equations stated in the theorem. Moreover, it follows from (17) that Z2

= 0;
thus Z(X) ∧ Z(Y ) = 0 for all tangent vectors X, Y . The latter condition is equivalent to the identity αδ = βγ as one
can see by means of (17). We have β = γ , since λ = µ = ν = 0, thus αδ = β2.

Conversely, if Eqs. (30) are satisfied, then (17) implies that B2
= 0. �
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5. Self-dual Walker metrics with B2|Λ− = 0

By a result of [1] the hyperbolic twistor space of a neutral 4-manifold is isotropic Kähler if and only if the metric is
self-dual, B2

|Λ− = 0, and the scalar curvature is constant. Theorems 1 and 4 imply the following explicit description
of the Walker metrics having these properties.

Theorem 6. A Walker metric satisfies the conditionsW− = 0 and B2
|Λ− = 0 if and only if the functions a, b, c have

the form

a = x2 K (z, t) + x E(z, t) + yF(z, t) + G(z, t),

b = y2 K (z, t) + x M(z, t) + yN (z, t) + P(z, t),

c = xyK (z, t) + x Q(z, t) + y R(z, t) + S(z, t),

(31)

where K , E, F, etc. are arbitrary smooth functions. In this case the metric has constant scalar curvature if and only
if K (z, t) = const.

Theorems 5 and 6 together with (16) lead to

Corollary 3. The conditionsW− = 0 and B2
= 0 hold if and only if a, b, c have the form (31) with K (z, t) ≡ const

and

(RE + F N − K G − R2
− F Q + 2Rz − 2Ft )(QN − RM + E M − Q2

− K P + 2Qt − 2Mz)

= (Q R − F M − K S + Et + Nz − Rt − Qz)
2.

In particular, any Walker metric withW− = 0, B2
= 0 has constant scalar curvature.

Proof. It follows from Theorems 5 and 6 that the conditionsW− = 0, B2
= 0 hold if and only if the functions a, b, c

have the form (31) and the functions α, β, δ defined by (16) are subject to the relation αδ = β2. Using (16) and (31)
we get that

2α = 2x Kz − 2Ft + 2Rz + F N + E R − F Q − G K − R2,

2β = x Kt + yKz + Et + Nz − Qz − Rt − F M − K S + Q R,

2δ = 2yKt − 2Mz + 2Qt + E M − K P − M R + N Q − Q2.

Comparing the coefficients of x2 and y2 on the both sides of the identity αδ = β2 gives Kz = Kt = 0. This proves
the result. �

Remark. We do not know of examples of neutral metrics with non-constant scalar curvature satisfying the conditions
W− = 0, B2

= 0.

Example 3. All the examples of neutral metrics with τ = const, W− = 0 and B2
|Λ− = 0 constructed in [1] also

satisfy the condition B2
= 0. The next example shows that this is not true in general.

Let K be a non-zero constant and let G, P, S be smooth functions of (z, t) such that G P 6= S2. Set

a = x2 K + G(z, t), b = y2 K + P(z, t), c = xyK + S(z, t).

In this case we have τ = const,W− = 0, B2
|Λ− = 0 by Theorem 6 and B2

6= 0 by Corollary 3. MoreoverW 6= 0 by
Theorem 2.

Example 4. Let G and P be arbitrary smooth functions of (z, t) and E, F, M, N non-zero constants such that
E N = F M . Set

a = x E + yF + G(z, t), b = x M + yN + P(z, t), c = 0.

Then we haveW = 0, τ = 0, B2
= 0, but B 6= 0. In particular, the sectional curvature of the metric is not constant.
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